

<u>Presented by:</u> Jeff Freitag, The Water Guy Jon Tiegs, General Manager

BOILER SYSTEM KEY PERFORMANCE INDICATORS

OBJECTIVES

- Understand The Importance of Practicing Key Performance Indicators (KPI's) in Your Boiler Room
- Identify Key Components of the System
- Understand How Water Chemistry Relates to KPI's
- Review Mechanical Components to Monitor
- Discuss Automation Options for KPI Monitoring

WATER: The Universal Heating Medium

- A. Relatively abundant (covers ¾ of earth's surface)
- B. Easy to handle and transport
- C. Non-Toxic and environmentally safe
- D. Relatively inexpensive
- E. Exists in three (3) forms
 - 1. Solid (ice)
 - 2. Liquid (water)
 - 3. Gas (steam)
- F. Tremendous capacity to absorb and release heat
 - high specific heat (1 B.T.U. of heat when added to 1 pound of water will increase the temperature of the water 1° F)
 - 2. High heat of vaporization (amount of extra heat required to effect the change from a liquid to a gas 970 B.T.U.'s/lb.)
 - 3. High heat of fusion (amount of extra heat required to effect the change from a solid to a liquid 143 B.T.U.'s/lb)

Basic Water Characteristics

- Dissolved Gasses
 - Carbon Dioxide
 - Oxygen
 - Hydrogen Sulfide
- Dissolved Solids
 - Calcium & Magnesium
 - Silica
 - Iron
 - Carbonate & Bicarbonate

- Suspended Solids
 - Dirt & Mud
 - Sand & Garbage
- Organic Material
 - Wood
 - Leaves & Seeds
 - Animal Remains
 - Oil

ASME Guidelines

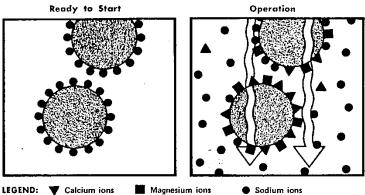
Suggested Water Chemistry Limits Industrial Firetube, High Duty, Primary Fuel Fired

- Makeup Water Percentage: Up to 100% of Feedwater
- Conditions: No superheater, turbine drives, or process restriction on steam purity
- Steam Purity: 1.0 mg/L TDS maximum
- Drum Operating Pressure: 0-300 psig

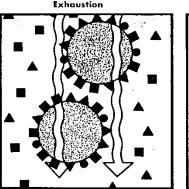
Parameter	Range					
Feedwater						
Dissolved Oxygen	<0.007 mg/L O ₂					
Total Iron	<0.1 mg/L Fe					
Total Copper	<0.05 mg/L Cu					
Total Hardness	<1.0 mg/L					
pH @ 25 C	8.0 - 10.5					
Nonvolatile TOC	<10 mg/L					
Oily Matter	<1 mg/L					
Boiler Water						
Silica	<150 mg/L SiO ₂					
Total Alkalinity	$<700 \text{ mg/L CaCO}_3$					
Free OH Alkalinity	NS					
Specific Conductance	<7,000 ys/cm					

Pre-Treatment Equipment

Softeners



Water Softener


- What is it?
 - An ion exchanger that removes cations from the water and replaces them with either sodium or hydrogen.
 - Typical Cations Removed
 - Calcium
 - Magnesium
 - Strontium
 - Iron

WHAT GOES ON INSIDE A WATER SOFTENER

SOFTENING PROCESS takes place on the surface of the ion exchange medium in the unit, shown here as large shaded pellets. The function of this medium is to pull "hard" calcium and magnesium ions out of the water and replace them with "soft" sodium ions. In this schematic drawing, the pellets are fully charged with exchangeable sodium ions, indicated by small black circles. HARD WATER enters the softener at the top of the column. It contains numerous calcium and magnesium ions, symbolized by triangles and squares. As the water flows through the unit, these ions become attached to the surface of the ion exchange medium which in turn releases its sodium ions. As the water emerges from the bottom of the column, it is virtually free of 'hard' ions.

Regeneration

AFTER A PERIOD of operation, the ion exchange medium becomes "saturated" with "hard" calcium and magnesium ions, and its supply of sodium ions becomes virtually exhausted. When this occurs, no further softening can take place. As a result, hard

TO RESUME ITS EFFECTIVENESS, the ion exchange medium must be stripped of its calcium and magnesium ions and provided with a new supply of sodium lons. This is done by running a salt solution, rich in rollium long though the unit. The sodium long force

Water Softener

- Why is it important?
 - Hardness is the worst enemy in a boiler system.
 - Hardness will form scale deposition on the heat transfer surfaces causing severe damage and increased energy costs

• KPI's

- Total Hardness Test on Water Samples (< 1ppm)
 - All pre-treatment equipment: Softeners, Dealkalizers, Reverse Osmosis systems, Feedwater, Condensate Return
- -Check salt level in the brine tank
- -Gallons per Regeneration
- -Salt per regeneration
- -Pressure Drop should not exceed 25 psig at peak flow

Reverse Osmosis (RO)

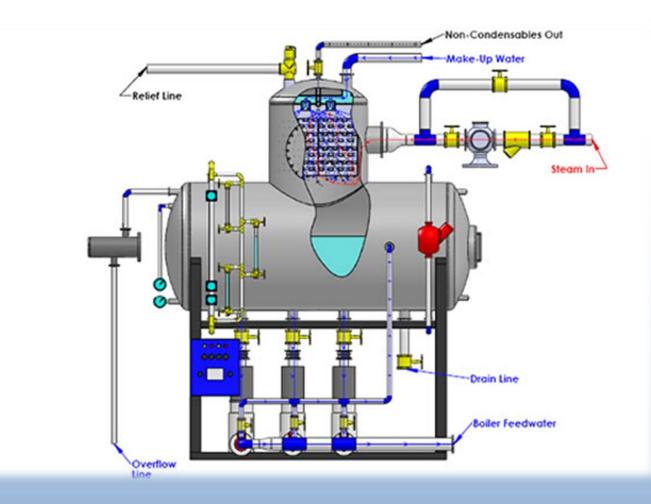
Reverse Osmosis

- What is it?
- Membrane-based separation process
- Involves the separation of dissolved solids from the feedwater by means of a semi-permeable membrane
 - Membranes allow water to pass through (permeate) readily, but are fairly impermeable to other constituents in the feed stream.
 - Removes ions from water before entering boiler
- Why is it important?
 - Improves water quality to help reduce water energy and chemical usage.
 - Improves overall system efficiency and provides excellent defense against scale buildup on the heat transfer surfaces.

- KPI's
 - RO Performance Data Monitoring Form

Parameter	RO Inlet	RO Interstage	RO Concentrate	RO Permeate	Other
Pressure	Х	Х	Х	Х	Across each prefilter
Flow rate	Х	Х	х	Х	
Conductivity	Х	Х	х	Х	
Temperature	Х		х		
PH	Х		х		
SDI	Х				Inlet and outlet to each multimedia filter
Chlorine, free	Х		х		
Turbidity	Х				
LSI			х		
MB plates (one/week)	х		Х	х	Before/after each piece of upstream equipment

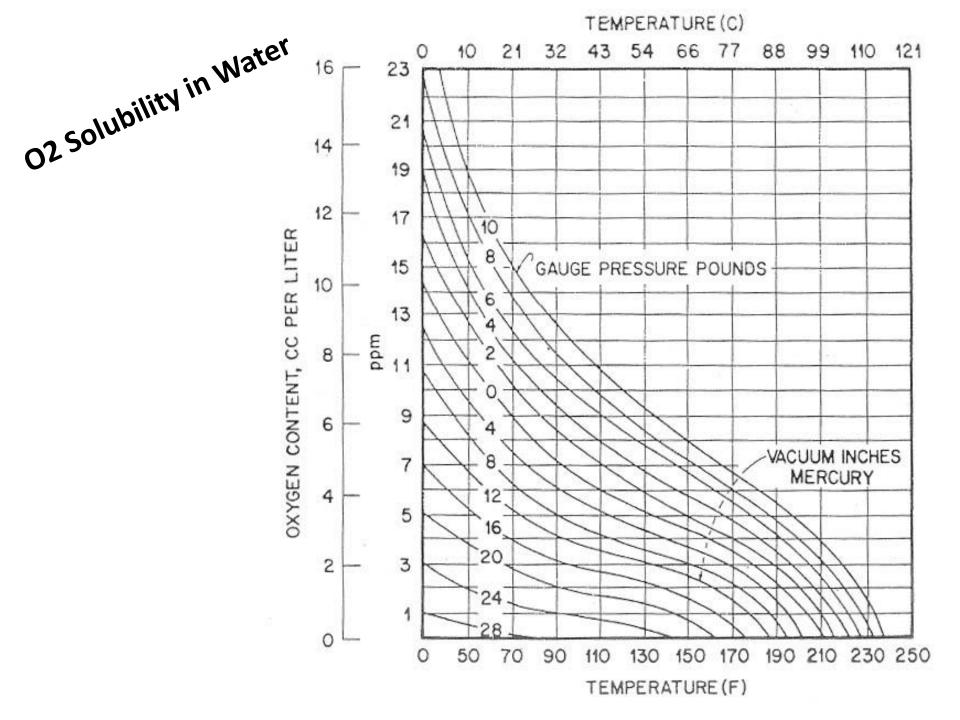
• KPI's


- Permeate conductivity levels should be at least 85 90% lower than the feedwater. Most designs call for 98% reduction.
- Pressure drop on the pre-filter should be less than a 10 psi drop (or 5 psi over nominal)
- If not feeding soft water to RO, proper chemical feed and control is critical to prevent membrane fouling
- Monitor pressure drops across the vessels, especially the second stage.

Problem	Product Flow	Salt Passage	Pressure Drop	Location
Scaling	Decreased	Increased	Increased	Last stage
MB Fouling	Decreased	Normal/increased	Normal/increased	Any stage
Colloidal Fouling	Decreased	Normal/increased	Normal/increased	First stage
Degeneration	Increased	Increased	Decreased	First stage
Abrasion	Increased	Increased	Decreased	First stage

RO Troubleshooting Guide

Advocates for innovative water management.


Deaerator

Deaerator

- What is it?
 - Primary purpose is to remove oxygen and other dissolved gasses from the feedwater.
 - Preheat the feedwater to prevent thermal shock on the boiler
- Why is it important?
 - At feedwater and boiler temperatures, even small amounts of oxygen greatly accelerate corrosion.
 - Corrosion will typically be observed in a few specific locations.
 - Economizer dramatic increase in temperature
 - Steam drum at steam/drum interface
 - Condensate system

- KPI's
 - Temperature
 - Temperature should be in the 212 240F range
 - For every pound of steam pressure maintained on the deaerator, the temperature increases 3F above the boiling point.

- i.e. -4 psig x 3 + 212F = 224

- Temperature should be within three degrees of the saturation temperature for the operating pressure the system is running at.
- Pressure
 - Most deaerators are designed to operate in the 3 10 psig range.

Advocates for innovative water management.

Deaerator

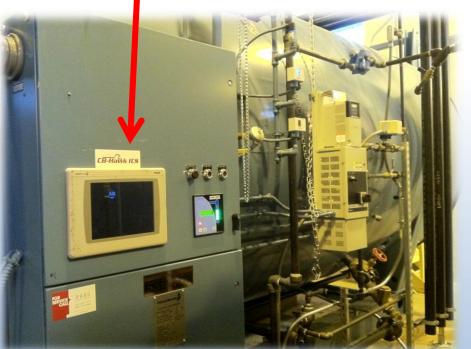
✓ Check Conductivity& Hardness

✓ Check pressure

✓ Check Temperature -

Boiler KPI's

KPI's for boilers


- Mechanical Items
 - Check water level in site glass
 - Monitor boiler pressure
 - Monitor boiler stack temperature
 - Perform column blow down, Low Water Cut Off (master & auxiliary)
 - Make sure burner cuts off
 - Reset auxiliary LWCO switch manually
 - Perform bottom blow down
 - Check for any alarms
 - Check the fire eye

Water Level Site Glass

Displays Boiler PSI & Stack Temps

Column Blow Down

Water Testing

KPI's for boilers

- Water Testing *Relates to ASME guidelines*
 - Conductivity
 - Oxygen Scavenger
 - Internal Treatment (phosphate, polymer, chelant)
 - Alkalinity
 - Water clarity

BOILER WATER TEST CONTROL CHART

Test	Range	Corrective Actions
Total Polymer (<i>PP-3060M</i> -Absorbance)	.68	 If out of range, check conductivity of the boilers. High or low conductivity will cause high or low readings. If conductivity is okay, increase addition of <i>PP-3060M</i> if absorbance is low, decrease if absorbance is high.
Sulfite (WT-3462)	20-40 ppm	 Check deaerator temperature. Check conductivity in the boilers. If both are in range, increase feed of <i>WT</i>-3462 if the reading is low and decrease the feed of the <i>WT</i>-3462 if the reading is high.
Alkalinity (WT-3732)	P= 300-450 M= 350-650 OH=200-400	 Check conductivity levels. High or low conductivity will cause high or low alkalinity. Check for proper feed of the <i>WT-3732</i> sodium hydroxide. If both are correct, increase the feed of the <i>WT-3732</i> to increase alkalinity levels and decrease the pump to decrease alkalinity levels.
Total Hardness (Softeners, Feedwater & Condensate)	<.5 ppm	 If hardness if present, check the softeners and condensate for possible contamination. Regenerate softener on line if necessary.
Boiler Conductivity (Un-Neutralized)	mmho 1,800-2,300	 If conductivity is out of range, check operation of blowdown controllers. Calibrate as necessary
рН (<i>WT-3516</i>)	8.3 – 8.8	 Increase feed of the <i>WT-3516</i> if pH is low. Decrease feed if pH is high. Wait for two days of below 8.0 readings to increase feed of the <i>WT-3516</i>.

Sample Cooler

Water Testing

- Always use the same sample port
- Flush sample port well
- Rinse sample container 3 times
- Testing frequency will vary depending on the type of facility, operating conditions, staffing
- Check chemical inventory levels at least once per week
- Check testing reagent expiration dates
- Log data on log sheet and into eService

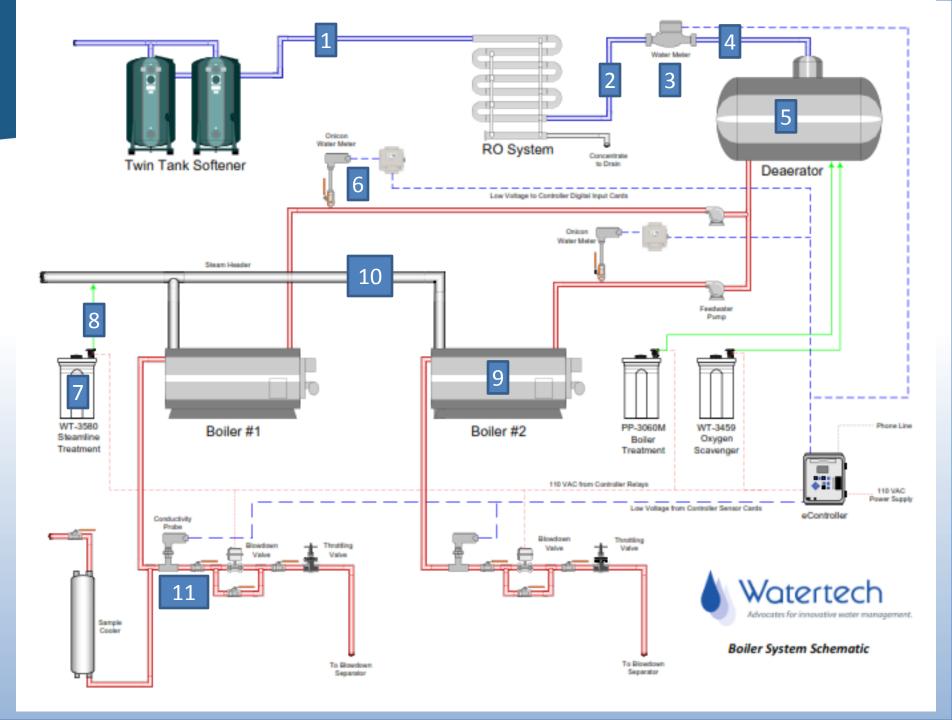
KPI's

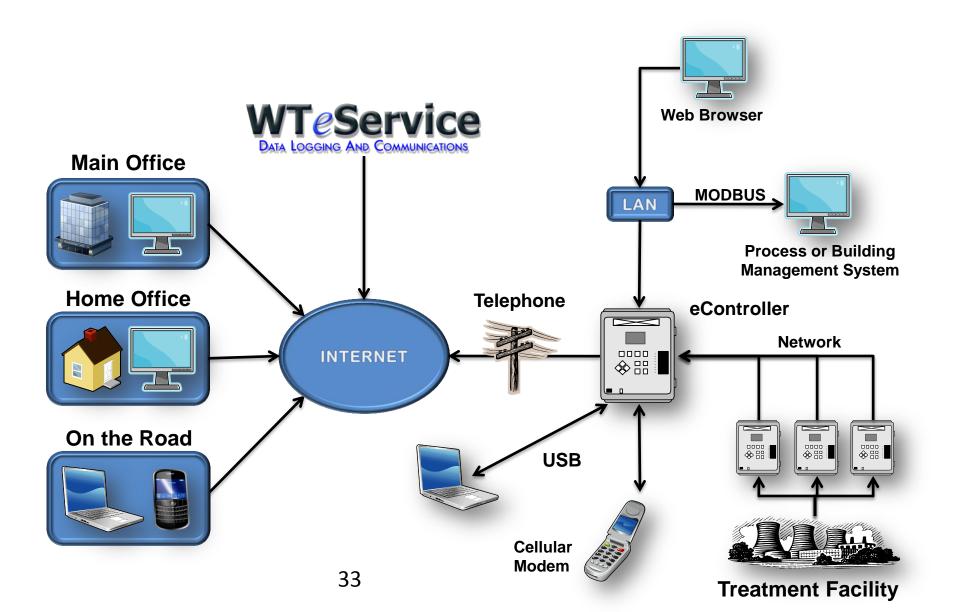
DAILY SERVICE

- Check that all chemical pumps are primed and pumping chemical
- Check liquid levels in all drums and tanks
- Check the motorized bleed valve for proper operation
- Conduct column and bottom blowdown
- Check the controller readings and any potential alarms
- Conduct full range of water tests
 - Make corrective actions if needed
- Check salt level in brine tank
- Record makeup meter reading
- Record pressure and temperature on DA

Advocates for innovative water management.

Automation





Typical Boiler System - I/O Point Description

•	POIN	T # DESCRIPTION	ANALOG/DIGITAL
•	1	Hardness Analyzer	Analog or Digital
•	2	Make Up Flow Meter	Analog or Digital
•	3	Make Up Inlet Temp – Blowdown Heat Exchanger	Analog
•	4	Make Up Outlet Temp – Blowdown Heat Exchanger	Analog
•	5	Deaerator Temperature	Analog
•	6	Deaerator Pressure	Analog
•	7	Economizer Inlet Temp	Analog
•	8	Economizer Outlet Temp	Analog
•	9	Boiler Steam Flow	Analog
•	11	Boiler Conductivity	Analog
•	13	Blowdown Flow	Analog or Digital
•	14	Blowdown Inlet Temp	Analog
•	15	Blowdown Outlet Temp	Analog
•	16	Condensate Conductivity	Analog
•	17	Oxygen Scavenger Tank Level	Analog
•	18	Oxygen Scavenger Feed Pump Verification	Digital
•	19	Internal Treatment Tank Level	Analog
•	20	Internal Treatment Feed Pump Verification	Digital
•	21	Steam Line Treatment Tank Level	Analog
•	22	Steam Line Treatment Feed Pump Verification	Digital

Industrial Water Treatment 2011

eController Communicating to the outside world

Datalogs are automatically sent to WTeService for trending and graphing. Data can also be compared to manually entered data.

"Taking the Log Sheet to the Next Level"

Are you still using something that looks like this?

۲

		Pleas	I FAX I	og sheet t	o Waterte	ch every l	Monday.	FAX = 41	4-425-3	162									Mon	th_	Qu	<i>sus</i>	t	99	
	WATER	METER	7 - 10	.5 - 1.0	1900	- 2000	DB	INA (ET	VELC	Ť	PUMP SE	TINCS	T -		_	h lead	ONN	_	-			_			
	TOTAL	DAILY	PALIN	BROMIN	CONTRI	METER	AQUA	C-103	5745	4004		W-5745	P	AST	P	EST			OWE		_	P	P FI		
1										-	1	/	ť	<u> </u>	<u>۴</u>	F	TEVP	LEVE	PSI	ST	₿.ws⊧	A	E	FLSH	¥АТ
2		9,600								+	1 /	1 %	⊢	┢──	+	-	-		┣	⊢	ł.	_			
3	121500	7,500	6.3	.94	2054	2050	7.25	125	120	9.2	11/1 11	30/90	-				_								
4	121575		42	.30	2000	2050	7.25	3.25	10.5	1.	401 100	301 90	56	60	-	-	78		14	12	-	17	10	-	Q. 1
5	121634	4,800			-	1020	1/343	2.92	13.5	8.5	401,100	30/90	56	137	-		72	1	16	2		17	6	1	On
6	121634	0000					 			╂──	<u> </u>	/										ŗ			
7	121746	1,400	4.9	.20	2025	tim	1. >	-			- /	/									-				he
8		100,000		.,,,,	3085	sac	6.5	3	13-25	18.5	10/100	30/90	-	-	56	44	72	<	14	a	-	17	10		Dar
9		17200								—	/	/	~		56	45	8		14		F	10	9	-	- Con
10	121906	5400	57	.75	1950	and	10	1	10-	-	/	1							-			10	*		
-	121960		4.9	10		2024	5.5	3	12.573	85	401/00	30/70	-	-	51	1.0	80	V	74	2	1.1	19	9	~	de
12	122005			122	1975		5.375	214	111.5	18.5	101100	30170	56	55	-		80	1	16	2	H	20	9	-	-35
13	122061	56m	4.9	045	2000		5,125	2.515	12,33	9	40/100	30/70	56	53	-		74	1	14	Z		$\frac{\omega}{\omega}$	7		XA
-			419	.38	1700	1988	4.5	2375	12.25	9.5	4011011	2120		60			PZ	1	16	2		4	10	-	H,
14	101137		5.6	,82	1980	2020	3.875	225	11.85	9.5	401/00	11/07	_	60	-		8Z	5	16	2		17	10 9	-	<u>*</u> 4
15									410.2		1	1	~	-	-		84	~	16	2	17	77	Z	-	*4
16		23.500									1	·/			-+	-+	-				\square	_	_		
17	122372		4.2	,98	1506	2000	3.5	2	11.5	8	401100	30/90	F/	60	+		_	-+	14	_	_	_	_	_	
18								~		0	10/700	,	26	60	-+		75	$\mathbf{\mathbf{x}}$	16	2	-	16	P	- 1	TED
19					1								-+	\rightarrow	\rightarrow		_	_					_		
20												-/	-	\rightarrow	-+	\rightarrow	_	_		_					
21												/	_	_	_	\rightarrow		_							
22			\rightarrow								/	/	_	_	_	$ \square$	_								
23			-+							_	/	1	_	_						_		T			
24											1	1			South State	2/	AV	\geq			2	1	1	\neg	
25			\rightarrow	+							/	1				10021101110	Concept of	house	_		J	\neg	+	+	
6											/	/			T							+	+	-+	
27			-+								/	1			T	T		1		-	1	+	+	-+	
8			-+-								/	/				1	-	-+	-	┥	+	+	+	+	
9											1	1	T	\neg			-	+	+	+	+	+	+	+	
0			-+-								/	1		-	\top	+	+	+	-+	+	+	+	+	+	
1											/	/	1	+	+	-	+	+	-+	+	+	+	+	+	
•			<u> </u>	<u> </u>							1	1	\uparrow	+	1	+	-+	-+-	+	+	+	+	-+	+	
Notes 8-3 Set branine pump baun to 2.5. and Notes 8-12 Set branine pump in to 2.5 to 8-14 Set Branner line pump to 2.5 to 8-14 Set Branner line down to 2.0 KZ 5-11 Set Branner line down to 8. and BIL																									

Disadvantages of the Paper Log Sheet

- Hard to find trends.
- Hard to related data points.
- Hard to find trends over time.
- Require manual entry into spreadsheet.
- Only finds problems if you look for them.
- Hard to summarize and draw conclusions

If we are doing this testing then let's make use of the data.

- Alert when system is out of control.
- Help identify little problems before they get bigger.
- Identify trends.
- Provide reports demonstrating performance.


- Be easy to email
- Email alerts when out of range
- Identify results out of range
- Identify trends
- Perform calculations
- Summarize data

Company Name Company Address			Coperator Log ack eMail PDF Edit Thursday, November 3, 2011 2:38 AM CDT Report Number: 104932 Recorded By: Operator Name								
City, State Zip			Date & Time								
		Boiler Room -	→ Cooling Water								
Test		Well Water	Cooling Tower Water	Tower Bleed							
Conductivity, mmho	Limits	630.1 980 max	2872 2625 - 2725								
Organo Phosphonate, ppm	Limits		5 3.5-6								
Total Hardness, ppm	Limits	380 400 - 600	1780 1400 - 1650								
Free Chlorine, ppm	Limits		.36 0.3 - 0.7								
Total Chlorine, ppm	Limits		.66 0.5 - 4	0 O max							
рН	Limits		8.02 8.3 - 8.45								
Total Dissolved Solids, ppm	Limits		2642.24 2560 max								
Conductivity Cycles (Calculated)	Limits		4.6 2.5 - 3.5								
Conductivity, Controller, mmohs	Limits		2785 2650 - 2725								
pH, Controller	Limits		8.25 8.3 - 8.45								
ORP,mV,Controller	Limits		623 600 - 750								
Tower Bleed, gpm	Limits			231 450 max							

- Be easy to email
- Email alerts when out of range
- Identify results out of range
- Identify trends
- Perform calculations
- Summarize data

of America, Inc.				J	ator Log					
Company Name Company Address City, State Zip			Report Number: 104932 Recorded By: Operator Name Date & Time							
		Boiler Room -	→ Cooling Water							
Test		Well Water	Cooling Tower Water	Tower Bleed						
Conductivity, mmho	Limits	630.1 980 max	2872 2625 - 2725							
Organo Phosphonate, ppm	Limits		5 3.5-6							
Total Hardness, ppm	Limits	380 400 - 600	1780 1400 - 1650							
Free Chlorine, ppm	Limits		.36 0.3 - 0.7							
Total Chlorine, ppm	Limits		.66 0.5 - 4	0 O max						
рН	Limits		8.02 8.3 - 8.45							
Total Dissolved Solids, ppm	Limits		2642.24 2560 max							
Conductivity Cycles (Calculated)	Limits		4.6 2.5 - 3.5							
Conductivity, Controller, mmohs	Limits		2785 2650 - 2725							
pH, Controller	Limits		8.25 8.3 - 8.45							
ORP,mV,Controller	Limits		623 600 - 750							
Tower Bleed, gpm	Limits			231 460 max						

- Be easy to email
- Email alerts when out of range
- Identify results out of range
- Identify trends
- Perform calculations
- Summarize data

WTeService ALARM! Cooling Towers

ol@wteservice.com Sent: Mon 10/31/2011 10:35 AM To: Jon Tiegs

*** Do not reply to this message. *** This is an automated email response.

On October 31, 2011 at 10:34 AM CDT, Terry Steinfeldt recorded 8.32 for 250 Ton pH. The result is low. Control Range: 8.4 to 8.65

Company Facility Building System

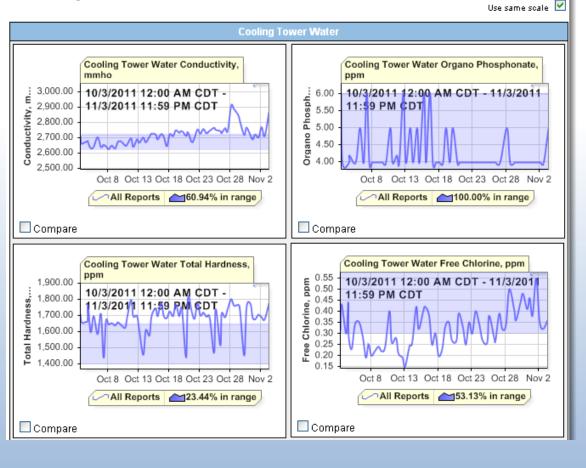
- Be easy to email
- Email alerts when out of range
- Identify results out of range

show trends

- Identify trends
- Perform calculations
- Summarize data

- Be easy to email
- Email alerts when out of range
- Identify results out of range
- Identify trends
- Perform calculations
- Summarize data

System History	Report	DF Back PDF Back Thursday, November 3, 2011 12:39 PM CD
Company Name Company Address City, State Zip		Generated By: Jon Tiegs (414) 425-3339 jon@watertechusa.com Date Range: October 3, 2011 - November 3, 2011
	Boiler Room -	→ Cooling Water
🛟 Cooling Tower Water		
Conductivity Cycles (Calculated)	37 58.73% in Range 15 Low 0	0 High 0 11 High 11 Low 0
🚀 Conductivity, Controller, mmohs	56 87.50% in Range 7 Low 0	1 High 1 Low 0 0 High 0 Low 0
🚀 Conductivity, mmho	39 60.94% in Range 20 High 20 Low 0	4 High 4 Low 0 1 Low 0
🚀 Free Chlorine, ppm	37 57.81% in Range 24 High 0 Low 24	3 High 0 Low 3 0 High 0 Low 0
₽₽ Organo Phosphonate, ppm	58 100.00% in Range 0 High 0 Low 0	0 High 0 0 High 0 Low 0 0 181 25.71%
₽₽ ORP,mV,Controller	63 100.00% 0 High 0 in Range 0 Low 0	0 High 0 0 High 0 0 Low 0 0 22 3.13%
<i>₽</i> ℓ рН	19 29.69% in Range 30 High 4 Low 26	8 High 0 7 High 0 Low 7
နာ့🖉 pH, Controller	23 35.94% in Range 37 High 1 Low 36	2 High 0 Low 2 2 High 0 Low 2
ណ្🖉 Total Chlorine, ppm	56 87.50% 8 High 0 in Range Low 8	0 High 0 O Low 0
🚀 Total Dissolved Solids, ppm	55 91.67% in Range 1 High 1 Low 0	4 High 4 Low 0 0 Low 0
₽₽ Total Hardness, ppm	15 23.44% in Range 37 High 37 Low 0	12 High 12 Low 0 0 Low 0
🚀 Total M Alkalinity, ppm	9 75.00% in Range 2 High 0 Low 2	0 High 0 1 High 1 Low 0


Watertech of America - 9415 W. Forest Home Ave., Hales Corners WI 53130 (414) 425-3339

- Be easy to email
- Email alerts when out of range
- Identify results out of range
- Identify trends
- Perform calculations
- Summarize data

Component Review

Back Print Compare

Advocates for innovative water management.

Questions?

jeff@watertechusa.com

jon@watertechusa.com

http://www.watertechusa.com/html/literature.php